What determines sex ratio in mammals? Class discussion

- 1) What is the expected sex ratio for just about all organisms?
- 2) In mammals, who determines the sex of the offspring? Males or females
- 3) Explain your answer to the previous 2 questions

4) Write down observations about the 2 graphs

6) Justify your answer to the question above. A justification has 3 components: 1) scientific knowledge and/or theory; 2) specific data from your analysis related to the knowledge; and 3) and explanation of how the data from your analysis supports the knowledge.

- 7) Under what conditions would natural selection favor investment in females?
- 8) Justify your answer to the question above. A justification has 3 components: 1) scientific knowledge and/or theory; 2) specific data from your analysis related to the knowledge; and 3) an explanation of HOW the data from your analysis supports the knowledge.

- 9) What is the probability of making a type I error?
- 10) Explain how the Chi squared distribution curve illustrates the probability of making a type I error

- 11) What is the probability of making a type I error?
- 12) Explain how this Chi squared distribution curve illustrates the probability of making a type I error

13) Why don't we make a significance level of 1% or less so we stop making type I errors (false positives)?

14) Calculate the chi square statistic for flipping a coin 20 times and getting heads 14 times. This is equivalent to saying you got heads 70% of the time

Chi-Squared Distribution: 1 Degrees of Freedom

0.7 Degrees of Freedom 0.6 df=1 0.5 95% chance of getting these 0.4 values 0.3 5% chance 0.2 of getting these 0.1 values 0.0 0 8 12 16 20 24 28 32 36 40 4 3.84 Chi square statistic

Chi-Square Table

р	Degrees of Freedom								
value	1	2	3	4	5	6	7	8	
0.05	3.84	5.99	7.82	9.49	11.07	12.59	14.07	15.51	
0.01	6.64	9.21	11.34	13.28	15.09	16.81	18.48	20.09	

17) Calculate the chi square statistic for flipping a coin 30 times and getting heads 21 times. This is equivalent to saying you got heads 70% of the time

Chi-Squared Distribution: 1 Degrees of Freedom

- 15) What is the probability of getting 14 out of 20 heads?
- 16) State the results in terms of H_0 and H_A

<u>Chi-Square Table</u>													
р	Degrees of Freedom												
value	1	2	3	4	5	6	7	8					
0.05	3.84	5.99	7.82	9.49	11.07	12.59	14.07	15.51					
0.01	6.64	9.21	11.34	13.28	15.09	16.81	18.48	20.09					

18) What is the probability of getting 21 out of 30 heads?

19) State the results in terms of $H_{0} \,and \,H_{A}$

Cross Cutting Concepts in Science

Patterns

20) How was the following demonstrated in this lab?

- Mathematical representations are needed to identify some patterns.
- Empirical evidence is needed to identify patterns.

Cause and Effect: Mechanism and Prediction

21) How was the following demonstrated in this lab?

- Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.
- Changes in systems may have various causes that may not have equal effects.

Scale, Proportion, and Quantity

22) How was the following demonstrated in this lab?

- The significance of a phenomenon is dependent on the scale, proportion, and quantity at which it occurs.
- Patterns observable at one scale may not be observable or exist at other scales.

Systems and system models

23) How was the following demonstrated in this lab?

- Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions—including energy, matter, and information flows—within and between systems at different scales.
- Models can be used to predict the behavior of a system, but these predictions have limited precision and reliability due to the assumptions and approximations inherent in models.