\qquad Period \qquad Assignment \# \qquad

Diffusion and Osmosis Math Problems (images are NOT to scale)

Review Lecture Question \#'s 32-34 (especially \#32)

Use AP Biology Equations and Formulas

Show your work and box your answers! Round answers to the nearest tenth.

1) Calculate the surface to volume ratio of the sphere to the right ($r=2 \mathrm{~mm}$). Show your work!
2) Calculate the surface to volume ratio of the sphere to the right ($r=3 \mathrm{~mm}$). Show your work!
3) Calculate the surface to volume ratio of the sphere to the right ($r=4 \mathrm{~mm}$). Show your work!
4) Calculate the surface to volume ratio of the cube to the right. Show your work!
5) Calculate the surface to volume ratio of the cube to the right. Show your work!
6) Calculate the surface to volume ratio of the cube to the right. Show your work!

Review Making Solutions Assignment

Use units and show unit cancellations! Box answers. Round answers to the nearest tenth.

7) If you had 100 mL of a 2.5 M solution of sucrose, how many mL of a 1.0 M solution of sucrose could you make? Predicted answer:

Rationale for prediction:
8) If you had 5000 mL of a 3.5 M solution glucosamine, and you added distilled water until you had 8000 mL of a glucosamine solution, what would the molarity of the new solution be?

Predicted answer:
Rationale for prediction:
9) How many mL of a 20% solution of NaCl do you need to make 150 mL of a 15% solution of NaCl ? Show your work and the equation!

Predicted answer:
Rationale for prediction:
10) If you made 200 mL of a 5% solution of maltase from 150 mL of maltase stock solution, what is the percent concentration of the stock solution?

Predicted answer:
Rationale for prediction:
11) If you had 300 mL of an 85% solution of phosphofructokinase, how many mL of a 60% solution of phosphofructokinase could you make?

Predicted answer:
Rationale for prediction:

Review Lecture Question \#45

Use the following as a guide for illustrating your answers

Shows net movement of water into the cell

Shows net movement of water out of the cell

Shows no net movement of water

Use units and show unit cancellations! Box answers. Round answers to the nearest tenth.
12) If a cell's $\Psi_{P}=3$ bars and its $\Psi_{S}=-4.5$ bars, what is the resulting Ψ ?

Predicted answer:
Rationale for prediction:

Explain what happened in terms of water potential:
13) The cell from the last question is placed in a beaker of sugar water with $\Psi_{S}=-4.0$ bars. In which direction will the net flow of water be? Illustrate your answer.

Predicted answer:
Rationale for prediction:

Explain what happened in terms of water potential:
14) The cell from the question above is placed in a beaker of sugar water with $\Psi_{s}=-0.15 \mathrm{MPa}$ (megapascals). We know that $1 \mathrm{MPa}=10$ bars. In which direction will the net flow of water be? Illustrate your answer.

Predicted answer:
Rationale for prediction:

Explain what happened in terms of water potential:
15) The value for Ψ in root cells was found to be -3.3 bars. If you take a root cell and place it in a 0.1 M solution of sucrose at $20^{\circ} \mathrm{C}$ in an open beaker, what is the Ψ of the solution, and in which direction would the net flow of water be? Illustrate your answer.

Predicted answer:
Rationale for prediction:

Explain what happened in terms of water potential:
16) NaCl dissociates into 2 particles in water: Na^{+}and Cl^{-}. If the solution in the question above contained 0.1 M NaCl instead of 0.1 M sucrose, what is the Ψ of the solution, and in which direction would the net flow of water be? Illustrate your answer.

Predicted answer:
Rationale for prediction:

Explain what happened in terms of water potential:
17) A plant cell with a Ψ_{s} of - 7.5 bars keeps a constant volume when immersed in an open-beaker solution that has a Ψ_{s} of -4.0 bars. What is the cell's Ψ_{p} ? Illustrate your answer.

Predicted answer:
Rationale for prediction:

Explain what happened in terms of water potential:
18) At $20^{\circ} \mathrm{C}$, a cell containing 0.6 M glucose is in equilibrium with its surrounding solution containing 0.5 M glucose in an open container. What is the cell's Ψ_{P} ? Illustrate your answer.

Predicted answer:

Rationale for prediction:

Explain what happened in terms of water potential:
19) At $20^{\circ} \mathrm{C}$, a cell with Ψ_{p} of 3.0 bars is in equilibrium with the surrounding 0.4 M solution of sucrose in an open beaker. What is the molarity of the cell? Illustrate your answer.

Predicted answer:
Rationale for prediction:

Explain what happened in terms of water potential:

